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Although SARS-CoV-2 is considered a lung-tropic virus that infects the respiratory tract

through binding to the ACE2 cell-surface molecules present on alveolar lungs epithelial

cells, gastrointestinal symptoms have been frequently reported in COVID-19 patients.

What can be considered an apparent paradox is that these symptoms (e.g., diarrhea),

sometimes precede the development of respiratory tract illness as if the breathing

apparatus was not its first target during viral dissemination. Recently, evidence was

reported that the gut is an active site of replication for SARS-CoV-2. This replication

mainly occurs in mature enterocytes expressing the ACE2 viral receptor and TMPRSS4

protease. In this review we question how SARS-CoV-2 can cause intestinal disturbances,

whether there are pneumocyte-tropic, enterocyte-tropic and/or dual tropic strains of

SARS-CoV-2. We examine two major models: first, that of a virus directly causing

damage locally (e.g., by inducing apoptosis of infected enterocytes); secondly, that of

indirect effect of the virus (e.g., by inducing changes in the composition of the gut

microbiota followed by the induction of an inflammatory process), and suggest that both

situations probably occur simultaneously in COVID-19 patients. We eventually discuss

the consequences of the virus replication in brush border of intestine on long-distance

damages affecting other tissues/organs, particularly lungs.

Keywords: COVID-19, SARS-CoV-2, gastrointestinal illness, microbiota, butyrate, tryptophan, vitamin D

INTRODUCTION

One year after the first outbreak of Coronavirus disease 2019 (COVID-19) in China, the
disease has emerged as a world pandemic with fatality rate around 2.27%, causing more
than 1.57 million deaths for 68.95 million people infected worldwide on 10 December,
2020 (https://coronavirus.jhu.edu/map.html). Although its etiological agent, SARS-CoV-2, is
mainly a lung-tropic virus, it is responsible for multi-organ failure in patients with severe
forms of the disease (1, 2). To enter susceptible cells, this virus binds to the angiotensin
I converting enzyme 2 (ACE2) (3). Some of the harmful effects of SARS-CoV-2 infection
are associated with the dysregulation of the renin angiotensin system (RAS) pathway and
thrombosis since the virus receptor, the ACE2 monocarboxypeptidase, acts as a regulator
of blood pressure homeostasis through its ability to catalyze the proteolysis of Angiotensin
II (AngII) into Angiotensin (1, 3–8). Yet, many papers reported clinical dysfunction
with various extra-pulmonary symptoms that are likely RAS-independent, in particular
intestinal disorders (5–8). SARS-CoV-2 induces diarrhea, nausea abdominal pain and vomiting
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as onset symptoms in patients with COVID-19 (5, 9). Zhang
and collaborators reported that 8.0–12.9% of COVID-19 patients
suffered from diarrhea (10). Indeed, gastrointestinal tract (GIT)
symptoms were observed in 5–80% of COVID-19 patients
depending on the cohort studied, and these symptoms sometimes
precede the development of respiratory tract symptoms (6–
8, 11–13). Digestive symptoms, in particular diarrhea, have
been reported as symptoms associated with a mild form of
the disease (without difficulty to breath and without low blood
oxygen levels), and people with GIT-symptoms were much more
likely to have the SARS-CoV-2 detected in their stool samples
(14). The process by which SARS-CoV-2 reaches the intestine
is not yet clear, and could occur either by the bloodstream
(with or without a hepatic stage) or by the oral-intestinal route
(from the trachea to the esophagus and intestine) (Figure 1). If
the correlation between mild GIT-symptoms and SARS-CoV-2
detection in stool was confirmed in some studies, other reports
suggest that COVID-19 patients with GIT-symptoms might have
a more severe form of the disease including the development of
severe respiratory disorders (15, 16). Moreover, it was reported
that SARS-CoV-2 can be detected in anal swabs and stool
samples in almost 50% of COVID-19 patients (17, 18) and that
duration of SARS-CoV-2 shedding from stool was longer than
that from respiratory samples (19). This suggests that the gut
is an active site for SARS-CoV-2 replication. Intestinal biopsies
of COVID-19 patients have allowed to evidence the presence
of replicating SARS-CoV-2 in epithelial cells of the small and
large intestine (20), highlighting an appropriate combination
between the virus spike sequence, the expression of ACE2 and
host protease required for spike processing during viral entry
(21). Each day, additional SARS-CoV-2 genomes are sequenced.
Yet, there is a massive knowledge gap regarding the SARS-CoV-
2 clade(s) that establish productive infection in enterocytes. It
was estimated that levels of SARS-CoV-2 RNA in stools can
range from 5.5 × 102 to 1.2 × 105 copies /mL, still much
lower than in nasopharyngeal fluids where SARS-CoV-2 RNA
ranges from 105 to 1011 copies/mL (22, 23). However, there
are studies reporting fecal shedding of 1.0 × 107 copies/mL
(17, 24). Substantial amounts of SARS-CoV-2 viral RNA can be
detected in the stool by polymerase chain reaction even after
the patients’ respiratory samples tested negative for the virus
(25–27). Live virus can be detected by electron microscopy
in SARS-CoV-2 positive fecal specimens (28), however virus
isolation from feces remains difficult (17, 29). This does not
allow to exclude the risk of possible fecal-oral transmission (30–
34). Although SARS-CoV-2 has been found extremely stable
in a wide range of pH values (pH 3–10) (35), it is possible
that SARS-CoV-2 may be inactivated in stool samples due to
bioactive molecules present in stimulated low pH human colonic
fluids (36). It might include mitochondrial antiviral signaling
protein (MAVS)-mediated type III interferon (IFN) induction,
such intestinal antiviral innate immunity rendering the viral
culture more difficult to establish (37, 38). Indeed, it was recently
reported that SARS-CoV-2 infection of enterocytes is associated
with an extremely robust innate immune response mediated by
type III interferon, which inhibits SARS-CoV-2 replication and
de novo production of the virus (39). This also questions the

nature of the molecular cross-talk set-up between SARS-CoV-
2, cells from the intestinal barrier, immune cells present in this
tissue and the gut microbiota (40–43).

LESSONS TO BE LEARNED FROM OTHER
CORONAVIRUSES TO FILL THE
KNOWLEDGE GAP ON GIT SPECIFIC
SARS-COV-2

Coronaviruses are among the most common pathogens
identified in the feces of mammals, such as cats and bats
(44–46). Several animal coronaviruses are natural enteric
pathogens, they cause GIT diseases, and spread by the
fecal-oral route, such as the polytropic strains of murine
betacoronavirus Mouse hepatitis virus (MHV) that uses the
carcinoembryonic antigen molecule CEACAM-1 as receptor
and causes disease in housed rodent colonies (47). The
MHV-1 induces severe pneumonitis, while several strains
(e.g., MHV-D or MHV-Y) were found enterotropic. The
coronavirus S glycoprotein has a major influence on MHV viral
tropism (48). Swine Transmissible Gastroenteritis coronavirus
(TGEV) and Swine Acute Diarrhea Syndrome coronavirus
(SADS-CoV), Canine alphacoronavirus (CCoV), Bovine
betacoronavirus (BCoV), and avian gammacoronaviruses
including Turkey coronavirus (TCoV), Quail coronavirus (Q
CoV) and Guineafowl coronavirus (GfCoV), are associated with
GIT disease (49, 50). The intestinal form of pig TGEV that infects
piglets, has been replaced worldwide by a much less pathogenic
Porcine respiratory coronavirus (PRCV) pneumotropic strain
that differs from TGEV by a few genomic deletions including a
672 nucleotides deletion in the 5′ region of the spike (51). With
the Feline coronaviruses (FCoV), some isolates are defined as
low-virulence Feline enteric coronavirus (FECV) whereas others
are defined as highly virulent Feline infectious peritonitis virus
(FIPV) and the ability to infect macrophages is an essential
virulence factor; the FIPV spike protein was found to be
the determinant for efficient macrophages infection (52). In
addition, traces of the genome of almost all the coronaviruses
circulating in the human species HCoV-OC43, -HKU1,−229E,
-NL63, SARS-CoV, and MERS-CoV have been found in stool of
infected humans (53–57). Moreover, 30% of patients withMiddle
East respiratory syndrome (MERS) and 10.6% of patients with
SARS-CoV-1 presented diarrhea (43). Although it was previously
reported that no live SARS-CoV-1 could be detected in stool
samples from SARS patients despite detection of SARS-CoV-1
mRNA (55), it was also hypothesized that MERS-CoV and SARS-
CoV-1 could be transmitted through the fecal-oral route (58, 59).
During the episode of SARS-CoV-1 in Hong Kong in March
2003, a study investigating the possible origin of the outbreak
suggested that the contamination occurred through bathroom
floor drains with dried-up U-traps at the Metropole Hotel in
Kowloon, which was a passageway through which residents
came into contact with small droplets containing viruses from
the contaminated sewage after the stay of a Guangzhou professor
who had been caring for patients with atypical pneumonia (60).
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FIGURE 1 | Schematic representation of the modes of transmission of SARS-CoV-2 among humans. SARS-CoV-2 is released from infected individuals by coughing,

vomiting, and through diarrhea and urine. Airborne is considered the primary mode of human-to-human transmission of SARS-CoV-2. After infection of the respiratory

tract, the virus can leave the lungs via circulation to induce secondary foci in other organs, including GIT. Whether SARS-CoV-2 can directly infect the GIT by the oral

route in humans seems possible since it is stable at acidic pH, but it is still under debate. Additionally, it has been shown that SARS-CoV-2 can jump back and forth

between humans and animals. This has been largely reported with minks. In pets, such as cats, human-to-cat transmission of SARS-CoV-2 and cat-to-cat respiratory

transmission of SARS-CoV-2 was demonstrated, not yet for cat-to-human transmission of SARS-CoV-2.

Coronavirus strains within a host usually represent mixtures
of different viral populations illustrating an adaptation to the
host with selection pressure working on a quasispecies basis.
The viral mutation rate for RNA viruses was estimated from
10−6 to 10−4 misincorporation per nucleotide (61, 62). Many
evidence support that RNA viruses exist as quasispecies and are
characterized by continuous genetic variation within populations
which is the result of high error rates of RNA-dependent
RNA polymerases. Mounting evidence indicates that over time,
quasispecies development may promote the emergence of new
viral species with a tropism perhaps distinct from that of the first
viral isolates. With TGEV, mutations of two nucleotides (nt) at
positions 214 and 655 in the spike induced a shift in tropism from
enteric to respiratory tropism (63). Similar observations of intra-
host quasispecies were reported with BCoV that split between
enteric and respiratory variants with the AH65-R BCoV and
AH187-E BCoV being able to change their tropism after multiple
passages in tissue culture (64). With FIPV, genetic variation and
recombination were reported within the same cat and between
cats (65, 66). A single nucleotide change within the S gene
encoding the fusion peptide was found in 96% of FIPVs from
cats with the wet and dry form of FIPV, but was absent from
FECV (67). Another study reported mutations in the region of
the S1/S2 cleavage site of FIPVs affecting the efficiency of cleavage
of the spike protein by furin (68). Quasispecies were observed

in the 5′ untranslated regions of the pig CoV HKU15 and also
in four positions with 2 nt substitutions and two indels (69).
Genetically diverse populations of SARS-like CoV are present
in geographically closely related Chinese horseshoes bats (70).
It was reported that SARS-CoV-1 exists as a quasispecies in
individual patients with nine recurrent non-synonymous variant
sites in the spike (71). The presence of MERS-CoV-associated
coronavirus quasispecies was also reported (72).

TISSUE-SPECIFIC PATTERNS OF
SARS-COV-2 VARIANTS

In the Syrian hamster model of COVID-19, the SARS-
CoV-2 was found to replicate in the animal lungs and to
induce severe lung lesions similar to commonly reported
lung damages in humans (73, 74). Beside the hamster lungs,
among non-respiratory tract tissues only the intestinal tissues
demonstrated viral antigen expression in association with
severe epithelial cell necrosis, intestinal villi damage and
increased lamina propria mononuclear or neutrophilic cell
infiltration. Next generation sequencing (NGS) was used to
study SARS-CoV-2 intra-host variability and identify possible
tissue-specific patterns and signature of variant selection for
upper (URT) and lower respiratory tract (LRT) from six
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COVID-19 patients (75). The presence of quasispecies was
observed in this study with differences between the URT and LRT
variants indicating a quasispecies compartmentalization. Yet,
no significant nucleotide differences (signature) were detected
between URT and LRT variants in the S glycoprotein. Similar
results have been reported with characterization of quasispecies
differences between anatomical sites (URT vs. LRT), but also
from one day to the next with sequential samples from a single
patient, suggesting a complex dynamic distribution of variants
(76). It has been recently reported that SARS-CoV-2 can be
detected in multiple organs including pharynx, liver, pancreas,
kidneys, heart and brain (77, 78). To the best of our knowledge,
no study has been performed so far to identify the possible
signature of SARS-CoV-2 variant selection for respiratory vs.
intestinal tropic viruses, such work is currently under way in
our institute.

It is currently well-established that intrahost SARS-CoV-2
variability is frequent across the viral genome in COVID-19
patients (79–81). It was also reported that intrahost SARS-CoV-
2 variability is higher in cancer patients compared to non-
cancer counterparts (82). Several non-synonymous mutations
have been reported in the spike of SARS-CoV-2. Interestingly,
it was reported that SARS-CoV-2 accumulates deletions very
close to the S1/S2 cleavage (RRAR∧S) and mutations that can
affect the furin cleavage site (83–85). By similarity with other
coronaviruses, it is likely that strains of SARS-CoV-2 exhibiting
a specific tropism for GIT will soon be identified. Finally, the
hypothesis that SARS-CoV-2 could be transmitted through the
fecal-oral route remain the subject of intensive research (86).

TISSUE DISTRIBUTION OF THE ACE2
VIRAL RECEPTOR AND SARS-COV-2
VIRAL TROPISM

The viral receptor, ACE2, is a 805 amino acids type I cell-
surface glycoprotein distributed broadly on type I and type
II alveolar epithelial cells (87), in the arterial and venous
endothelial cells and the arterial smooth muscle (88), and is also
expressed in the renal, the cardiovascular and gastrointestinal
tissues (89). ACE2 was also reported on the epithelial cells of
the oral mucosa (90). Using a Syrian Hamster animal model
of SARS-CoV-2 infection, it was recently reported that oral
inoculation of SARS-CoV-2 established mild pneumonia in
67% of animals exposed to the virus and caused intestinal
inflammation (91). The expression of ACE2 on enterocytes
of the small intestine was reported by Hamming et al. (88),
with the highest expression found in the brush border of
intestinal enterocytes (92, 93), the main role of which is to
ensure the absorption of nutrients. According to a preprint
(not peer reviewed) by Wang et al., ACE2 is highly expressed
on colonocytes, slightly expressed on colonocytes-bestrophin
(BEST4) anion channel positive, very slightly expressed on
enteroendocrines cells and Paneth cells, almost undetectable in
goblet cells, and tuft cells (94). Colonocytes were also found
at single cell resolution to overexpress genes regulating viral
entry, budding, and release (including the chromatin modifying

proteins CHMP1A, CHMP1B, CHMP2A, CHMP2B, CHMP3,
CHMP4B, CHMP4C, that are members of the endosomal sorting
complex required for transport ESCRT family; the vacuolar
protein sorting associated proteins VPS4B, VPS28, VPS37B; the
programmed cell death six interacting protein PDCD6IP and
the multivesicular body subunit MVB12A, that function within
the ESCRT pathway; the vesicle-associated membrane protein-
associated protein VAPA involved in membrane trafficking;
the poliovirus receptor related PVRL2, a component of tight
junctions; and the cadherin CDH1/E-cadherin that maintain
epithelial tight junctions).

ACE2 also suppresses intestinal inflammation by maintaining
amino acid homeostasis (95, 96). SARS-CoV-2 was found
to infect human small intestinal organoids established from
primary gut epithelial stem cells and proliferative progenitor
or Apolipoprotein A1+ enterocytes (97). This is likely how
SARS-CoV-2 mediates the invasion of the GIT and its local
amplification. Yet, beside ACE2, themolecules involved in SARS-
CoV-2 early stages of infection may differ. In pneumocytes, it has
been well-established that following ACE2 receptor engagement
SARS-CoV-2 is processed by a type II transmembrane serine
protease, TMPRSS2 prior to membrane fusion. Although both
ACE2 and TMPRSS2 are highly expressed in the GIT, it was
reported that these molecules are not co-expressed on enterocyte,
TMPRSS2 being expressed on ACE2neg intestinal epithelial cells
and not mature enterocytes; yet, for the processing of the viral
spike (S), TMPRSS2 can probably be replaced by other serine
proteases of the same family, such as TMPRSS4, highly expressed
in ACE2+ mature enterocytes (36). It was previously reported
with SARS-CoV-1 that the sheddases ADAM17 and ADAM10
can cleave ACE2 but only the cleavage by TMPRSS2 resulted in
augmented SARS-CoV-1 spike driven entry (98, 99).

THE FUNCTION OF ACE2 IN THE
GASTROINTESTINAL TRACT

Once dietary proteins have been hydrolyzed by the action of
proteases and by brush-border membrane-bound peptidases,
trans-epithelial absorption of amino acids across enterocytes
involves amino acid transporters (100). ACE2 can cleave carboxy-
terminal amino acids from nutrients proteins/peptides and its
proteolytic activity has a pH optimum of 6.5 (90% efficiency at
pH 6.0–7.5), compatible with the intestinal pH that ranges from
7.3 to 7.7 (101, 102). ACE2 is also required for expression of
the sodium-dependent neutral amino acid transporter B0AT1
and amino acid (proline) SIT1 transporters on the luminal
surface of intestine epithelial cells and the two transporters
co-localize with ACE2 along the brush-border membrane of
duodenum and terminal ileum enterocytes on villi (103, 104). In
ACE2 deficient mice, B0AT1 is absent from the small intestine
(103). Expression of the B0AT1 gene is controlled by the
activation transcription factors HNF1α and HNF4α (105). A
close association of B0AT1, ACE2, and aminopeptidase N (APN)
in the brush-border membrane was reported (102). Fairweather
et al. suggested that B0AT1 trafficking and expression in the apical
membrane of enterocytes is largely dependent on ACE2, whereas
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optimal functioning to changing dietary conditions requires
association with APN. It was reported that ACE2 regulates the
gut homeostasis, the expression of antimicrobial peptides and
the gut microbiota (95, 96). According to Hashimoto et al.
(95) ACE2 knock-out (KO) mice had reduced levels of neutral
amino acids in the serum, displayed impaired tryptophan uptake,
and showed an altered composition of the microbiota (likely
a loss of bacteria sensitive to oxidative stress), which could be
restored by tryptophan administration. Tryptophan enhances
expression of tight junction proteins Claudin-3, Claudin-4, and
Zonula Occludens ZO-1 and ZO-2 (106). When ACE2 knock-
out (KO) mice were challenged with dextran sodium sulfate
a profound inflammatory reaction was observed (107). Fecal
transplantation of this microbiota into germ-free animals trigger
infiltration of inflammatory cells and an increased propensity to
develop severe colitis. An antibiotic treatment rescued bloody
diarrhea in the ACE2 deficient mice colitis model. This influence
of ACE2 on the gut microbiota composition was confirmed in
another study (108). The ACE2 regulation of gut homeostasis was
RAS-independent and ACE2 regulate the innate immunity. This
possibly explains the diarrhea sometimes observed with SARS-
CoV-2 patients, and support the use of antibiotic treatment in
COVID-19 patients.

Epithelial cells, such as epithelial enterocytes, goblets cells,
Paneth cells, and intestinal stem cells express the nucleotide-
binding oligomerization domain 2 (NOD-2) which sense the
bacterial muramyl dipeptide (MDP), attracts receptor-interacting
serine/threonine kinase 2 (RIP2), transforming growth factor β-
activated kinase 1 (TAK1) and TAK1 binding proteins 2 (TAB2)
or TAB3. This complex also induces the activation of both MAP
kinase (MAPK) and NF-κB which contribute to activate the
secretion of antimicrobial peptides Reg3γ, α-defensin, such as
HD5 and HD6, β-defensin, and lysozyme (109). It was reported
that human defensin-5 (HD5), the most abundant α-defensin (a
lectin-like peptide able to bind lipids and glycosylated proteins),
secreted by intestinal Paneth cells, interacts with ACE2 at an
affinity of 76.2 nM (110). In the ileal fluid the HD5 is present
in abundance (6–30µg/mL; around 2–8µM) so that HD5 can
compete with SARS-CoV-2 for binding to ACE2 α-helix 1 and
loop 2. Wang et al. have found that adding HD5 to Caco2 cells
significantly reduced SARS-CoV-2 infection (111). Interestingly,
α-defensins have been linked to atherosclerosis being involved in
the lipoprotein metabolism in the vessel wall and favoring LDL
and lipoprotein (112, 113).

GIT DISEASE: THE DIRECT SARS-COV-2
EFFECT MODEL

ACE2 has been shown to have a potent interaction with
SARS-CoV-2 S glycoprotein with an affinity of 14.7 nM which
is about 10- to 20-fold higher than that of ACE2 binding
to SARS-CoV-1 S protein (114). It was reported that ACE2
is predominantly expressed in CD26+Epcam+ CD44−CD45−

mature enterocytes of the gut epithelium and present in both
duodenum and ileum (103). It was documented that the
membrane-bound TMPRSS2 can cleave ACE2 as well as the
viral spike thereby promoting SARS-CoV-2 entry into the target

cells. TMPRSS2 is expressed on ACE2− intestinal epithelial
cells while two other serine proteases in the same family,
TMPRSS4 and ST14/matriptase are highly expressed in ACE2+

mature enterocytes and, TMPRSS4 was found to increase SARS-
CoV-2 infectivity (36). SARS-CoV-2 induces syncytia formation
between intestinal epithelial cells (36). This process is likely to
lead to subsequent cytopathic effect and local damages that could
explain the GIT symptoms observed in COVID-19 patients. In
addition, the SARS-CoV-2 infection is likely to trigger innate
immunity by the activation of pattern recognition receptors
(PRRs) able to recognize components termed pattern associated
with molecular patterns (PAMPs), including viral antigens and
both cellular stress signals and damaged tissue. PAMPs are
recognized by the amino-terminal leucine -rich repeat of toll-
like receptors (TLR) type I transmembrane proteins expressed
at the cell surface or in endosomes. TLR are classified into
six major families and include TLR-3 which recognizes double
stranded RNA (dsRNA), TLR-7, and TLR-8 which detects single-
stranded RNA (ssRNA) while TLR-9 engages unmethylated
CpGDNA (115). When activated these receptors expressed in
the intracellular endosomes, trigger signals (e.g., MyD88 or TIR-
domain-containing adaptor) inducing interferons (IFNs). This is
expected to decrease viral spread by establishing an antiviral state
in uninfected neighboring cells. The TLR-3 receptor is expressed
on endosomes of mature gut epithelial cells whereas TLR-4 is
expressed only in crypt epithelial cells and its expression is lost
as the cells mature and move toward the gut lumen (116).

Previous studies conducted on SARS-CoV-1, revealed that no
modulation of TLR was observed in monocytes but the infection
was associated with over-expression of chemokine receptors
CCR-1, CCR-3, and CCR-5 and TNF-related apoptosis inducing
ligand (TRAIL) which may induce lymphocytes apoptosis and
lymphopenia (117). TLR-3 agonist poly(I:C) and TLR-4 agonist
lipopolysaccharide (LPS) were found to be protective against
SARS-CoV-1 and MERS-CoV infection in mice (118, 119). In
addition, in a model of TLR-3/TLR-4-deficient mice, these mice
were found to be more susceptible to SARS-CoV-1 infection
than wild type animals (120). Regarding SARS-CoV-2, it is
worth noting that lymphocytes count has been found to be a
marker of the severity of COVID-19, lymphopenia on admission
being associated with poor outcome of the disease (121, 122).
Interestingly, in SARS-CoV-2 infection, at least 3.5% of patients
with severe COVID-19 have mutations in IFN genes affecting
antiviral defense and 10% of patients produce auto-antibodies
against type I IFN suppressing immune response (123, 124).

The nucleotide-binding oligomerization domain 2 (NOD2), a
recognition receptor that senses MDP bacterial peptidoglycan-
conserved motifs in cytosol is expressed in Paneth cells. After
its engagement with MDP, NOD2 triggers the production of
host defense peptides (HDPs; previously named AMPs for
antimicrobial peptides) as well as cytokines and chemokines
stimulating the immune response from both epithelial and
immune cells (125, 126). It was recently reported that the α-
defensin HD5 (but not HD6) present at the level of intestinal
mucosa can bind ACE2 at high affinity (39.3 nM) thereby
inhibiting the interaction between the S glycoprotein of SARS-
CoV-2 and ACE2 in a dose-dependent manner (110). It could
be of importance for SARS-CoV-2 during its colonization of
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FIGURE 2 | Schematic diagram of SARS-CoV-2 infection of mature enterocytes and consequences on intestinal dysbiosis. Different cell types (enterocytes, Paneth

cells, globet cells, M, cells, enteroendocrines cells, tuft cells) interact together through tight junctions (homotypic interactions of E-cad in trans) to form a continuous

epithelial barrier isolating the luminal content from the internal tissues. The goblet cells secrete the mucins (e.g., MUC2–mucin gel) in the hope of protecting the

intestinal epithelium by reducing bacteria attachment while allowing nutrients to be processed by enterocytes. The Paneth cells produce antimicrobial proteins, in

response to infection. The enteroendocrines epithelial cells express the FFA2/GPR43 and FFA3/GPR4 surface receptors that bind the SCFAs and trigger signal

leading to the regulation of the glucose homeostasis and the secretion of hormones influencing appetite; these cells also express the NRP-1 receptor and produce

VEGF. The main role of enterocytes is to ensure absorption of nutriments. Uptake of tryptophan depends on B0AT1. ACE2, expressed by enterocytes is necessary for

the surface expression of the amino acid transporter B0AT1 in the intestinal epithelium. ACE2 mRNA expression is strongly reduced in cells infected by SARS-CoV-2.

In the microenvironment where the infection occurs, the villous microfold cells (M cells) expressing the toll-like receptors/TLR detect stress signals, tissue damages,

and PAMPs (e.g., lipopolysaccharide /LPS from Gram negative bacteria recognized by TLR-4 and its co-receptor CD14, flagellin, peptidoglycan, lipoproteins, and

unique bacterial nucleic acid structures), have a pivotal role in antigen presentation, they uptake antigens from the luminal content, transport (transcytosis and

microvesicle uptake), these antigens to their basolateral membrane where they are delivered to the underlying immune cells of the gut-associated lymphoid tissues

(GALT), including KLRG1+ dendritic cells and monocytes/macrophages, CD103+ T-cells, KLRG1+ T-cells, and other immune cell subpopulations, which colonize the

lamina propria. After their priming, the immune response cells migrate to the site of infection to counteract the pathogen invasion. The doublecortin like kinase 1

(DCLK1+) tuft cells also contribute to innate immunity (i.e., they recognize protozoan and helminth antigens) and produce IL-25 that activate innate lymphoid cells

(ILC2) at inducing IL-13 production. It is likely that a decrease in butyrate (protective function) is a consequence of SARS-CoV-2-associated reduced diversity of

microbiota. In addition, COVID-19 patients produce less HD5, thereby reducing the overall antibacterial defense. Due to the dysbiosis, stress signals, tissues

damages, and recognition of bacterial peptidoglycan-conserved motifs, muramyl dipeptide, and MDP sensed by the nucleotide-binding oligomerization 2 (NOD2) are

likely to regulate the production of cytokines IL-1β and IL-18 aimed at restricting bacterial replication and to provoke pro-inflammatory reactions [see review (137) for

details]. The activation of cellular and bacterial sheddases reduces the epithelium surface expression of E-cad at the site of infection, resulting in the destruction of

adherent’s junctions and allowing pathogens’ transmigration. We previously speculated that the induction of E-cad on subpopulation of immune response cells

(E-cad+ T-cells and CD16+/E-cad+ monocytes) redirects those cells far from the infection site. The release of sE-cad might also serve as a decoy for diverting

immune cells from their function through the interaction with E-cad, CD103, or KLRG1 at the surface of immune cells. In addition, SARS-CoV-2 infection is associated

with massive production of SARS-CoV-2 specific IgA and lymphopenia. In some patients there are also IFN-specific auto-antibodies that reduce antiviral defense.
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the intestinal epithelium to down-regulate HD5 and this could
be achieved by acting on the neutral amino acid transporter
B0AT1. In addition, immunoglobulin A (IgA are produced by
B lymphocytes localized in the intestinal lamina propria) acts as
host defense against viruses. Recently different studies reported
that the serum level of SARS-CoV-2 specific IgA is positively
correlated with COVID-19 severity (127, 128). This suggested
a massive specific immune response activation against SARS-
CoV-2 part of which could come from the synthesis of IgA
by B lymphocytes present in the intestinal mucosa. It was
previously reported that the intestinal IgA are recruited during
inflammatory processes (129).

Very recently it was reported that the enhanced human
spreading of SARS-CoV-2 compared to SARS-CoV-1 could
possibly be explained by the presence of a polybasic furin type
cleavage site, RRAR∧S, at the S1/S2 junction in the SARS-CoV-
2 spike which is not found in SARS-CoV-1 and likely primes
the fusion activity and could potentially create additional cell
surface receptor binding sites. Under such condition, neuropilin-
1 (NRP-1) known to bind furin-cleaved substrates could be an
entry cofactor that potentiates SARS-CoV-2 infectivity (130).
NRP-1 and its related NRP-2 transmembrane protein are 120–
130 kDa multifunctional non-tyrosine kinase receptor known
to interact with both the class 3 semaphorins and heparin-
binding members of the vascular endothelial growth factor
(VEGF) family, as well as other growth factors in epithelial
cells (131, 132). Both NRP-1 and NRP-2 are expressed in the
GIT (133, 134). NRP-2 was initially found expressed at the
basolateral side of the serotonin-producing enteroendocrine
cells in small intestine (133) but both NRP-1 and NPR-
2 were later found to co-localize with cells that express
chromogranin-A (CgA), a general marker of enteroendocrine
cells (135). The presence of NRP-1 in the intestine (about
10% of CgA+ cells express NRP-1 and GPR41/GPR43), could
therefore increase the intestinal infectivity of SARS-CoV-2. In
the crypts of colonic epithelium these cells express VEGF in
their granules, suggesting that VEGF may have a role in the
maintenance and control of the permeability of the capillary
system (136).

Altogether these results indicate that ACE2, TMPRSS4, and
NRP-1 are present in the GIT, thus facilitating SARS-CoV-
2 infectivity. They also suggest that SARS-CoV-2 reduces the
production of HD5 which could otherwise act as a competitive
inhibitor for binding to ACE2, induces lymphopenia, and
quite frequently (10% of patients) stimulates the production
of auto-antibodies against type I IFN, thereby suppressing
the antiviral immune response (Figure 2). In those patients
the shedding of infectious SARS-CoV-2 into feces could
be increased.

GIT DISEASE: THE INDIRECT SARS-COV-2
EFFECT MODEL (THE ROLE OF
MICROBIOTA)

While intestinal symptoms associated with SARS-CoV-2
infection may be due to direct infection of the intestinal

epithelium, they may also be due to decreased antibacterial
defenses, decreased microbiota diversity, increased intestinal
barrier permeability, bacterial translocation and/or systemic
leak of endotoxin. Bacteroidetes and Firmicutes are considered
predominant in the gut while Proteobacteria are the most
abundant in the lung (138, 139). It is usually admitted that the
intestinal microbiota can be influenced by respiratory virus
infection leading to the development of the disease through
the gut-lung axis and that compounds, such as endotoxins,
microbial metabolites, and/or cytokines, can travel into the
bloodstream connecting both sides of this axis [(10, 140–142).
Several recent reports confirm that SARS-CoV-2 replication in
the gut is associated with modulation in the diversity of bacterial
species present in the GIT, likely reducing host antiviral immune
response and aggravating lung damage observed during these
infections (143, 144). A study conducted by Gu et al. (145)
indicated that, compared to healthy controls, COVID-19 had
significantly reduced bacterial diversity and higher relative
abundance of opportunistic pathogens, such as Streptococcus,
Rothia, Veillonella, and Actinomyces, which can aggravate the
inflammation or be associated with secondary bacterial lung
infection. Another investigation (146), confirmed the dysbiosis
and reported that a decreased abundance of Faecalibacterium
prausnitzii (usually one of the most abundant Firmicutes in the
gut) and an increased abundance of Coprobacillus, Clostridium
ramosum, Clostridium hathewayi, Actinomyces viscosus,
Bacteroides nordii correlated with COVID-19 severity. In
addition the abundance in bacterial species, such as Bacteroides
massiliensis, Bacteroides dorei, Bacteroides thetaiotaomicron,
and Bacteroides ovatus were inversely associated with fecal
SARS-CoV-2 load. It is worth noting that all these species
are known to be associated with downregulation of ACE2
expression in murine colon, suggesting that these bacterial
species could be beneficial to patients by reducing SARS-CoV-
2 entry into target cells. In contrast, the Firmicutes species
Erysipelotrichaceae bacterium showed positive correlation
with fecal SARS-CoV-2 load, suggesting that this bacterial
species could increase intestinal SARS-CoV-2 infection and
replication. Fecal calprotectin, a biomarker of inflammatory
response in the gut, was found elevated in COVID-19 patients
with diarrhea (147). In a recent paper, the microbiota from
COVID-19 patients was found to be characterized by an
higher relative abundance of genera Streptococcus, Veillonella,
Fusobacterium, Clostridium, Lactobacillus and Bifidobacterium
whereas Bacteroidetes, Roseburia, Faecalibacterium, Coprococcus,
Parabacteroides, and Sutterella (148). Another recent preprint
(not peer reviewed) reported that based on proteomic data from
31 COVID-19 patients that identified biomarkers of unbalanced
immune system (including IL-1β, IL-6, TNF-α, hsCRP), the
screening of a cohort of 990 individuals without infection using
the combination of fecal metabolomic analysis and machine
learning model, found differences which could be indicative of
the predisposition of individuals to inflammation and severe
COVID-19 (15). The authors linked inflammation with high
abundance of some genus, such as Blautia (positively associated
with IL-10) and Lactobacillus (positively associated with IL-6
and IFN-γ).
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These results support the hypothesis that SARS-CoV-2
infection is associated with a reduced production of antimicrobial
agents, a reduced bacterial diversity (e.g., loss of beneficial
bacteria) and a higher relative abundance of opportunistic
pathogens (138, 139, 146, 148). This dysbiosis can be at
the origin of the inflammation, tissue damage, and physical
intestinal barrier loss associated with secondary bacterial lung
infection (Figure 3). These alterations in microbiota diversity
are likely to increase the risk to severe COVID-19 and
disease progression.

MODULATION OF BUTYRATE,
TRYPTOPHAN, AND VITAMIN D3 LEVELS
IN COVID-19

Butyrate, considered a protective molecule against inflammation
is the end-product of anaerobic bacteria fermentation of non-
digestible carbohydrates and also a component of dairy products
(e.g., butter, milk, and cheese). By a mechanism of cross feeding,
the intestinal symbiotic microbiota contributes to maintain the
production of butyrate by butyric acid bacteria ubiquitously
present in the gut microbiota of healthy humans. These bacteria
also participate in the inhibition of pathogens growth by
competing for nutrients and prevent toxin translocation by
maintaining the integrity of the intestinal epithelium. Their
mode of action is to metabolize carbohydrates to obtain short-
chain fatty acids (SCFAs) including acetate, propionate, and
butyrate (152). Yet, they are highly sensitive to oxidative stress.
The abundance of Faecalibacterium prauznitzii, which is able to
use acetate as a source for butyrate production, is significantly
decreased in COVID-19 patients, although it is one of the most
abundant Firmicutes in the gut of healthy humans (41, 151). It
can therefore be hypothesized that butyrate is low in COVID-
19 patients and insufficient to trigger secretion of bioactive
compounds from enteroendocrine cells of the gut expressing
the butyrate heterotrimeric guanine nucleoside-binding protein-
coupled receptors GPR41 and GPR43 (153), which contributes
to worsening dysbiosis. Butyrate could be added to the diet
of the patients to counter the loss of obligate cross-feeding
bacteria contributing to homeostasis (154). Butyrate was found
to downregulate NRP-1 and VEGF in colorectal cancer cell lines
and fecal butyrate levels are inversely proportional to NRP-
1expression in vivo (135, 155). Conversely, the reduction of
butyrate allows the expression of NRP-1, which likely contributes
to SARS-CoV-2 infectivity of the GIT through binding to furin-
cleaved substrates in the viral spike (130) (Figure 4). The use of
butyrate as a supportive treatment for COVID-19 has already
been proposed (156). High intestinal lumen butyrate interacts
with both GPR41 and GPR43. Its binding to GPR43 activates
the G-proteins which stimulates phospholipase C (PLC) leading
to generation of diacyglycerol (DAG) which activates protein
kinase C (PKC) and, inositol triphosphate which triggers Ca2+

release from the intracellular stores. Its binding to GPGR41
activates proteine kinase A (PKA) (157). Therefore, butyrate
supplementation to restore high intestinal butyrate levels could

possibly reduce infectivity of intestinal epithelial cells with
SARS-CoV-2 and prevent autophagy.

As already discussed in this minireview, ACE2 is required for
expression of the neutral amino acid transporter B0AT1 (158).
Steric hindrance to the B0AT1 binding site on ACE2 or down-
regulation of ACE2 due to the presence of SARS-CoV-2 is likely
to display impairment in tryptophan uptake. In homeostatic
condition, tryptophan is used by the host indoleamine 2,3-
dioxygenase (IDO)1 to be converted to Kynurenine, and IDO1

exerts its biological effects mainly through the generation of
downstream metabolites that suppress effector T-cell function,
and favor the differentiation of regulatory T cells (Treg)
(159). Several indole metabolites including indole, indole
propionic acid, indole acetic acid, and tryptamine are produced
by metabolism of tryptophan through the gut microbiota
indole pathway that involves commensal species, such as
Peptostreptococcus russellii, Lactobacillus spp., and Clostridium
sporogenes (160). These indole metabolites have been described
as activators of the aryl hydrocarbon receptor (AhR) (161).
AhR promotes IL-22 production from innate immune cells
(ILCs), natural killer T (NKT) cells, CD4+ lymphocytes cells,
which stimulates the IL-22 receptor on intestinal epithelial cells
triggering Stat3 activation and the induction of mucosal defense,
mucin production by Goblet cells and the induction of AMPs
release by Paneth cells (105, 162) (Figure 5). A recent observation
was reported indicating that COVID-19 infection results in
alterations of the kynurenine pathway and fatty acid metabolism
that correlate with IL-6 serum levels (163), which is consistent
with impairment of tryptophan metabolism leading to synthesis
of N-formyl-L-kynurenine, L-kynurenine, and anthranilic acid
through the IDO1/Tryptophan 2,3-dioxygenase (TDO) pathway
(164). Indeed, impaired tryptophan uptake leads to aberrant
mammalian target of rapamycin (mTOR) protein kinase and
p70S6kinase activation and lower production of antimicrobial
peptides (AMPs) from enterocytes (106) and Paneth cells
granules, with a reduced production of lysozyme, RegIIIγ,
cystein-rich cationic peptides with antibiotic and antiviral
activity (e.g., α-defensin HD5 and HD6), leading to a change in
the composition of the microbiota and an increase in bacterial
translocation in situations of loss of the intestinal physical
barrier. It was also reported that mice deficient in ACE2 have
altered microbiota and increased susceptibility to intestinal
inflammation induced by epithelial damage. The transplantation
of their microbiota into germ-free mice increased the propensity
of recipient mice to develop severe colitis which can be prevented
by dietary amino acid tryptophan (95). This suggests that the
addition of tryptophan to the diet of COVID-19 patients suffering
from diarrhea may improve their health (160).

Recently it was reported that among 12 patients with
respiratory distress, 11 (91.7%) had one or more nutrient
deficiencies, with vitamin D deficiency being observed in 76%
of COVID-19 patients vs. 43.3% of controls (165, 166). Vitamin
D is provided by the food bolus (e.g., fatty fish, olive oil, calf
liver, chocolate). The vitamin D receptor (VDR), a nuclear
receptor expressed in intestinal enterocytes of the proximal
colon and particularly Paneth cells (it is also distributed in
a large variety of cells, such as bronchial epithelial cells,
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FIGURE 3 | Schematic representation of SARS-CoV-2-associated intestinal dysbiosis. Once in the GIT, SARS-CoV-2 acts on the gut microbiota homeostasis and

sometimes induces severe dysbiosis. About 100 trillion bacteria present in the intestinal lumen compose the human gut microbiota. It is a quite complex ecosystem,

with over 1,000 bacterial species and 7,000 strains, in which the phyla Firmicutes (species, such as Lactobacillus, Enterococcus, and Clostridium) and Bacteroidetes

(species, such as Bacteroides) account for the majority of species. Other phyla including Proteobacteria (Escherichia coli), Actinobacteria (Bifidobacteria),

Cyanobacteria, Fusobacteria, and Verrucomicrobia are also present in lower abundance (149). The commensal intestinal microbiota is limited to the epithelium-distal

mucus layer, while the epithelium-proximal mucus is largely devoid of bacteria. Viruses are also present in the human gut. They include bacteriophages, Myoviridae,

Siphoviridae, Podoviridae, Tectiviridae, Inoviridae, Microviridae, among others (150). The gut microbiota expresses enzymes allowing the production of essential

vitamins (such as vitamin K, B1, B6, B9, and B12). Bacteria from the Firmicutes, Bacteroidetes, and Actinobacteria phyla are involved in bile acids metabolism,

liberating free primary bile acids, up-regulating the mucosal defenses and controlling the cholesterol homeostasis. Butyrogenic bacteria (such as Firmicutes), are

ubiquitously present in the gut microbiota of healthy humans. These bacteria are very sensitive to oxidative stress. They produce butyrate, an end-product of

anaerobic bacteria fermentation of non-digestible carbohydrates is considered a crucial protective molecule against inflammation. The butyrate inhibits the histone

deacetylase HDAC, increases the junctional adhesion molecules JAM/occludin involved in the stability of tight junctions, and antagonizes the peroxisome

proliferator-activated receptors (PPARs) that control inflammation [see the review (151) for details]. Many viruses (e.g., rotaviruses, caliciviruses, astroviruses, enteric

adenoviruses, toroviruses, and parechoviruses) are known to induce gastroenteritis in humans (40). Coronaviruses are also frequently associated with diarrheal

disease in humans. Regarding SARS-CoV-2, studies of gut microbiota have indicated a decrease in bacteria diversity in severe COVID-19 patients characterized by a

decrease in Faecalibacterium (Faecalibacterium prausnitzii) and predominance of Streptococcus, Veillonella, Actinomyces, Clostridium, Bacteroides. The expression

of antimicrobial compound HD5 and Vitamin D3 were also found reduced in COVID-19 patients.

lymphocytes, monocytes, skin keratinocytes, and distal renal
cells) (167, 168), is an important contributor to the intestinal
homeostasis. Vitamin D deficiency is common in patients
with inflammatory bowel disease of the GIT (169), cystic
fibrosis and chronic obstructive pulmonary disease in lung
(170). It was reported that old men with the highest levels
of the active form of Vitamin D (1α,25-dihydroxyvitamin

D) are more likely to possess butyrate-producing Firmicutes
and Clostridia bateria (171). The 1α,25-dihydroxyvitamin D3

(calcitriol calcemic hormone) up-regulates cathelicidin (the
anti-microbial peptides LL-37) and β-defensin 2 (172). The
JAK/STAT3 pathway is over-activated in response to intestinal
dysbiosis and VDR transcriptionally regulates Jak2 to maintain
homeostasis (173). Using ACE2 as bait to build a genomic-guided
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FIGURE 4 | Schematic representation of the protective effect of butyrate against dysbiosis and its proinflammatory effects. The enteroendocrines I, K, and/or L

epithelial cells express heterotrimeric guanine nucleoside-binding protein (G-protein) coupled cell surface receptors (e.g., FFA2/GPR43 and FFA3/GPR41) that bind

the short-chain fatty acids (SCFAs) and trigger signal leading to the regulation of the glucose homeostasis and the secretion of hormones influencing appetite. These

cells also express the NRP-1 expected to enhance SARS-CoV-2 infectivity and produce the vascular endothelial growth factor (VEGF) involved in the permeability of

the capillary system. In COVID-19 patients, the decreased microbiota diversity probably influence the production of SCFAs acting on enteroendocrine cells through

G-protein-coupled receptor that secrete bioactive compounds. In particular, the absence of cross-feeding bacteria that help maintain butyrate production by butyric

acid bacteria can aggravate intestinal inflammation, tissue damage, translocation of toxins and pathogens. Besides being a major source of energy allowing cells to

escape autophagy, butyrate acts on the epigenetic regulation of genes by inhibiting histone deacetylase (HDAC), it represses NRP-1 and NRP-2 expression and

increases expression of junctional adhesion molecules occludin. Symbols: (+) means activation; (–) means: inhibition.

molecular map of upstream regulatory element it was found
that JNK1/cFos, HNF4α, Runx1 are activators of ACE2 gene
expression while VDR (activated by HNF4α), is a repressor of
ACE2 (174) (Figure 6). Vitamin D supplementation protects
the intestinal epithelium against bacterial infection and invasion
by acting on the bacterial induced activation of the NF-κB
pathway. Vitamin D triggers the interaction between VDR
and the p65 subunit of NF-κB, reducing its phosphorylation
and nuclear translocation (175). This leads to a reduction in
intestinal epithelial apoptosis, maintenance of the integrity of the
intestinal mucosal barrier (176, 177). Moreover; it may increase
the levels of Treg lymphocytes (known to participate in the
control of inflammation), which have been reported to be low
in many COVID-19 patients (178) and attenuate Th1 and Th17

responses (177). VDR physically interacts with β-catenin and
regulates the E-Cad expression involved in epithelial junctions
through repression of β-catenin (179). Activation of VDR by
vitamin D induces expression of CYP3A, a cytochrome P450
enzyme that detoxifies the secondary bile acid lithocholic acid
(LCA), in the intestine (180). Moreover, vitamin D decreases
rhinovirus replication and increase interferon and anti-microbial
peptide cathelicidin/LL-37 which demonstrates antiviral activity
against respiratory enveloped viruses, such as influenza and
respiratory syncytial virus (RSV) (181–184). An increased
mortality (21 vs. 3.1%) was reported in vitamin D-deficient
COVID-19 patients (185). Indeed, insufficient vitamin D levels
increased hospitalization andmortality from COVID-19 (186). A
preliminary study on residents of a nursing-home who received
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FIGURE 5 | Interaction between the Tryptophan receptor channel B0AT1 and ACE2 at the surface of enterocytes. The main role of enterocytes is to ensure the

absorption of nutriments. ACE2, expressed by enterocytes is necessary for the surface expression of the amino acid transporter B0AT1 in the intestinal epithelium.

Tryptophan (Trp) is an essential amino acid obtained from food and whose assimilation depends on B0AT1. It mediates crosstalk between the intestinal mucosal

immune system and the microbiota. Trp directly activates the mammalian target of rapamycin (mTOR) pathway and enhances tight junctions though increased

expression of cell adhesion molecules Zonula occludens (ZO-1, ZO-2) and likely E-Cad. In addition, Trp promotes the IL-22/IL-22R-mediated expression of

endogenous AMPs, such as β-defensin and LL-37 by Paneth cells, which in turn influence the composition of the intestinal microbiota. It is worth noting that HD5

binds ACE2. It can be hypothesized that following infection with SARS-CoV-2, tryptophan cannot get properly absorbed due to the reduced expression or the

absence of ACE2/ B0AT1, leading to aberrant secretions of AMPs, and altered microbiota (decreased microbiota diversity), which confers susceptibility to intestinal

inflammation. Symbols: (+) means activation; (–) means: inhibition.

chronic vitamin D supplementation with regular maintenance
boluses (single oral dose of 80,000 IU vitamin D3 every 2–3
months), suggests that regular vitamin D3 intake halves the risk
of fatal outcome of COVID-19 (187).

DISCUSSION

Respiratory and gastrointestinal epithelia share a common
embryonic origin in the primitive foregut which likely
account for shared functional characteristics (188). Although
SARS-CoV-2 was first described as a virus capable to
infect pneumocytes, we highlight here the possibility of
gastrointestinal system as a potential target for enterocyte-tropic
or dual-tropic SARS-CoV-2.

It is currently unclear whether SARS-CoV-2 can be
transmitted through the fecal-oral route (GIT being considered
in that case a primary site of infection), if the upper GIT may
be involved in SARS-CoV-2 entry followed by replication in the
intestinal epithelium prior to dissemination to other tissues, or if
the virus can spread from a primary pulmonary site of infection
into the gastrointestinal system (secondary site). It is also unclear
whether or not SARS-CoV-2 quasispecies contain viruses with a
preferential lung tropism and other with preferential intestinal
tropism, or if some SARS-CoV-2 are dual tropic viruses. In
addition to the isolation and sequencing of the SARS-CoV-2
from the upper respiratory tract there is an imperative necessity
to collect stool samples from COVID-19 patients to isolate the
SARS-CoV-2 spreading in the GIT and to compare their genome
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FIGURE 6 | Schematic representation of the protective effect of Vitamin D against dysbiosis and its proinflammatory effects. Vitamin D/cholecalciferol from diet or

supplements is hydroxylated to 25-hydroxy-vitamin D or calcidiol by the cytochrome P450 hydorolases CYP2R1 and CYP27A1, then it is hydroxylated at the 1 alpha

position by CYP27B1 to generate calcitriol which is the metabolically active form of vitamin D3. Vitamin D receptor (VDR) maintains the Paneth cell alertness to

pathogens in intestinal disorders. The Paneth cells produce antimicrobial proteins (e.g., C-type lectin REG3γ, α-defensins, β-defensins, cathelicidins, and lysozyme) in

response to infection. Genetically and environmentally regulated VDR in the Paneth cells may set the threshold for the development of chronic inflammation. Vitamin

D3/VDR upregulates cathelicin/LL-37 and β-defensin 2 and downregulates the JAK/STAT and NF-kB pathways. In the presence of Vitamin D3, the VDR expressed in

enterocytes translocates to the nucleus where it cooperates with the C/EBP transcription factor to increase Claudin 2 and Claudin 12 gene transcription, increasing the

pools of cytoplasmic Claudins, two molecules that contribute, together with E-cadherin (E-Cad), to the integrity of epithelial tight junctions. The activation of VDR by

vitamin D3 also suppresses the cytoplasmic release of β-catenin from E-cad thus decreasing the levels of nuclear β-catenin and reducing the levels of β-catenin/T cell

factor (TCF) complexes that are required for the expression of genes involved in cell proliferation (such as cyclin D). Symbols: (+) means activation; (–) means: inhibition.

and biological properties with those of SARS-CoV-2 isolated
from the respiratory tract. A high virus titer in the stool might
indicate a higher risk of transmission via feces.

Elegant work has shown that SARS-CoV-2 uses the ACE2
receptor for binding and the serine protease TMPRSS2
for the S glycoprotein priming, and demonstrated that the
serine protease inhibitor camostat mesylate which is active
against TMPRSS2, partially blocked SARS-CoV-2 spike driven
entry in the human Caco2 intestinal (ACE2+, TMPRSS2+)
cells (189, 190). It was recently reported that when the
Caco2 cells were exposed to vesicular stomatitis virus (VSV)
particles pseudotyped with chimeric spike from SARS-CoV-2
that carry receptor binding domain (RBD) variant sequences

from different betacoronaviruses, appropriate RBD sequence is
required for infection whereas most RBD are incompatible with
infection (21). When Caco2 cells were exposed to SARS-CoV-
2 S pseudovirions (94), adhesion was observable by confocal
microscopy after 1 h of incubation. So far, the infection and
replication of a laboratory strain of SARS-CoV-2 at a multiplicity
of infection (MOI) of 0.1 for 2 h at 37◦C in human Caco2
(intestinal) cells and Calu3 (pulmonary) cells were reported
to be comparable over a period of 120 h (191). It is worth
noting that SARS-CoV-1 was shown to infect polarized Calu3
cells at the apical membrane and is also released at the apical
membrane with evidence of cytopathic effect (CPE), whereas
no CPE was reported during replication of SARS-CoV-1 on
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Caco2 cells (192). Preliminary data reported in a preprint (not
peer-reviewed) available on the web site of our Institute, the
IHU Méditerranée Infection (193), indicate that in Caco2 cells
exposed to SARS-CoV-2 IHUMI2 grown in VERO-6 cells, the
viral replication occur (according to RT-PCR monitoring) but
no CPE was observed during the 7 days of cell culture. Other
data reported in a preprint (not peer-reviewed) monitored Caco2
cellular toxicity 48 h following exposure to SARS-CoV-2 (MOI:
0.01) isolated in Germany from travelers returning from Wuhan
(194). Caco2 cells infected with SARS-CoV-2 produce filopodia
protrusions extending out from the cell surface containing viral
particles (195).

ACE2 modulates innate immunity and influences the
composition of the gut microbiota diversity which can explain
GIT symptoms. Usually, the mucus layer present at the surface
of the intestinal epithelium, the antimicrobial peptides produced
by Paneths cells and other epithelial cells of the intestine,
the commensal intestine microbiota competing with possible
infectious pathogens, are acting as first line of intestinal innate
defense while the homotypic interaction of E-cad in trans
acts as a second defense line protecting the host against
intruder transmigration (137). It is likely that during SARS-
CoV-2 infection, infected enterocytes died from virus-induced
apoptosis or autophagy leading to viral clearance through dead
enterocytes renewal. Regarding innate immunity, SARS-CoV-
2 infection of enterocytes was found to induce a strong IFN
response and the production of cytokines (e.g., the IFNγ-
inducible cytokine CXCL10 known to bind CXCR3 receptor
and to induce inflammation) (97), similar to that observed
during infection of respiratory tissues (196). Recently, it was
reported that GIT infection by SARS-CoV-2 was associated with
a significant reduction in COVID-19 severity and mortality
with an accompanying reduction in key inflammatory proteins
including IL-6, CXCL8, IL-17A, and CCL28 (197). It was
reported that Lactobacillaceae fermentation produce bioactive
peptides with the capability to inhibit ACE (198, 199) likely
reducing the concentration of angiotensin II that is responsible
for proinflammatory signals in COVID-19 patients (4). These
peptides could possibly bind to ACE2 since the active site of
ACE2 contains a zinc-metallopeptidase motif and share 42%
sequence homology with the amino-terminal domain of ACE
(200), and prevent ACE2 interaction with SARS-CoV-2. The
recent investigation of COVID-19 patients microbiota provided
evidence of dysbiosis with a significantly reduced bacterial
diversity (including a decreased abundance of Faecalibacterium
prausnitzii known to prevent inflammation; this bacterium can
use acetate as a source for butyrate production) and higher
relative abundance of opportunistic pathogens (Streptococcus,
Rothia, Veillonella, and Actinomyces) which can aggravate
inflammation (139, 146, 148). This is likely associated with
damage of epithelial tight with cleavage of E-cadherin and
release of soluble E-cadherin as previously described (137),
a phenomenon also observed during chronic obstructive
pulmonary disease (141). Epithelial breakdown allows the
establishment of invasive bacterial infections possibly resulting
in secondary bacterial lung infection.

Lung dysfunction as a result of inflammatory bowel disease
was reportedmore than 40 years ago (201). Since then, increasing

evidence supports the idea that alteration in the gut microbial
species can alter the inflammatory state and the immune response
and, ultimately, influence disease outcome in the lungs (138, 139,
202). For example, in Influenza A virus infection, a change in
lung microbiota composition with enrichment in Streptococcus
and decreased abundance in Pseudomonas has been reported
(203) as well as a shift from Bacillus to Lactobacillus in the
lung microbiota with concomitant reduction of bacterial species
diversity for the gut microbiota (204). In a murine model, it was
observed that the reduction of the gut microbiota diversity by
antibiotics increased the susceptibility to Influenza virus in the
lung (205). Moreover, an increased abundance of Streptococcus
and Staphylococcus was reported in the bronchoalveolar lavage
fluid of mice inoculated intra-nasally with H1N1 (206). Within
rhinovirus-infected patients diagnosed with chronic obstructive
pulmonary fibrosis, an increased abundance of Haemophilus
influenzae was observed compared to controls (207). Dickson
et al. reported that gut associated species were present in higher
abundance in the lungs of patients with acute respiratory distress
syndrome (ARDS) than in healthy controls (208). Similarly,
enrichment of lung microbiota with bacteria found in the
GIT is correlated with the onset of acute respiratory distress
syndrome and severity of COVID-19 (209, 210). In the lung
tissue of deceased patients with COVID-19 the most prevalent
genera were Acinetobacter (80.7%), Chryseobacterium (2.7%),
and Burkholderia (2.0%) (211). The assumption can also be made
that lung microbiota changes can signal to the gut and might
contribute or amplify systemic inflammation and gastrointestinal
disorders as observed for other viral infection (212). For
example, influenza-induced IFN produced in lung promotes
depletion of obligate anaerobic bacteria and enrichment of
Enterobacteriaceae in the GIT and leads to a proinflammatory
gut environment (213).

The fact that SARS-CoV-2 infection of enterocytes leads
to decreased production of antimicrobial peptides may also
have indirect adverse effects on distant tissues (e.g., heart,
lungs), since the antimicrobial PR-39 peptide has been shown
to provide cardioprotection by preventing leukocyte adhesion
and emigration (214). However, the model of antimicrobial
peptides that provide cardiovascular protection is not as simple,
since other antimicrobial peptides have the opposite effect
(e.g., α-defensins have been linked to atherosclerosis and the
antimicrobial peptide LL-37 is highly expressed in atherosclerotic
plaques) (112, 113, 215). Once GIT epithelium is damaged
in COVID-19 patients, the interaction between the virus and
NRP-1 expressed on cells of the crypts of colonic epithelium
these cells are likely to trigger the release of VEGF-containing
granules from enteroendocrine cells, followed by a modulation
of the permeability of the capillary system. It is known that
microvascular injury and obstructive thrombo-inflammatory
syndrome represent the primary causes of COVID-19 lethality
(216, 217).

We can hypothesize that in COVID-19, the gastrointestinal
dysbiosis is the consequence of a cascade of events that are
found in most of the pathological processes, namely a loss
of bacterial diversity, in particular of “beneficial” bacteria,
a greater abundance of “harmful” bacteria associated with
damage to the epithelium. This dysbiosis is followed by the
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induction of a pro-inflammatory response that results in
an immunological shift from Treg cells to Th1 and Th17
cells. Maintaining a balanced immune response in COVID-
19 appears to be essential to improve patient outcome.
Therefore, in order to reduce the intestinal proinflammatory
states in COVID-19 patients, one strategy could be to
promote butyrate (4 g sodium butyrate daily), L-tryptophan (4
mg/Kg of body weight daily) and Vitamin D3 (5,000–10,000
IU daily) supplementation to the patients diet in addition
to a well-chosen antibiotic therapy and anti-inflammatory
molecules. Controlled trials should be conducted to evaluate this
therapeutic strategy.
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